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a b s t r a c t

The standard correction to Akaike’s Information Criterion, AICc, assumes the same
predictors for training and verification and therefore underestimates prediction error for
random predictors. A corrected AIC for regression models containing a mix of random
and fixed predictors is derived.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Akaike’s Information Criterion (AIC) has a known tendency to select overfitted models. Hurvich and Tsai (1989) showed
hat the cause of this overfitting tendency lies in the asymptotic approximations used to derive AIC. To derive a bias-
orrected version of AIC, Hurvich and Tsai (1989) evaluated the Kullback–Leibler (KL) divergence exactly for normal
istributions, assuming the candidate family of models includes the true model. The resulting criterion, AICc, often
utperforms its competitors (McQuarrie and Tsai, 1998) and has become a standard criterion recommended by many
nvestigators (e.g., Burnham and Anderson, 2002, p66). However, an assumption that is not always emphasized in the
erivation of AICc is that predictor values are the same in the training and validation samples. Rosset and Tibshirani
2020) call this the ‘‘Same-X" assumption, and note that many model selection criteria implicitly assume Same-X. In
ontrast, many applications of model selection fall under the ‘‘Random-X" assumption, in which predictor values differ
rom training to validation. Although the Same-X and Random-X distinction has been known for some time (see Rosset
nd Tibshirani, 2020, for a review of this literature), the generalization of standard model selection criteria to Random-X
s more recent. For instance, the extension of Mallows’ Cp to Random-X has appeared only recently (Rosset and Tibshirani,
020). In this paper, we derive a new criterion, AICm, which is an exactly unbiased estimate of the Kullback–Leibler-based
riterion for regression models containing an arbitrary mix of Same-X and Random-X predictors. Such models include the
nalysis of Covariance (ANCOVA) model. The multivariate generalization of AICm also is derived.
Under Same-X, AICm equals AICc. Under Random-X, AICm leads to a new criterion that we call AICr. We use the same

umerical model as (Hurvich and Tsai, 1989) to show that AICc is indeed biased for Random-X and that it is more likely to
elect overfitted models than AICr. This paper complements Tian et al. (2020), who derive several model selection criterion
nder Random-X. Their RAIC differs from our AICr only by the fact that AICr accounts for the intercept. A notable fact
s that Fujikoshi (1985) derived a criterion for selecting X-variables in Canonical Correlation Analysis. That criterion is
quivalent to selection based on differences of AICr derived in this paper.
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. The corrected AIC for Random-X

We consider the problem of predicting y based on x. Let the conditional PDF of y given x be p(y|x), where x and y denote
xplanatory and response variables, respectively. We call p(y|x) the true PDF. The candidate PDF is denoted q(y|x; φ), where
denotes model parameters. In this notation, y, x, and φ could be multivariate. By familiar arguments, the Kullback–Leibler
ivergence leads to a model selection criterion based on the expected value of −2 log q(y|x; φ) (Akaike, 1974; Hurvich and
sai, 1989; McQuarrie and Tsai, 1998).
To estimate the KL divergence, let φ∗ denote an estimate of φ derived from the training sample (x∗, y∗), and let (x0, y0)

enote the validation sample. Both samples are drawn from the true PDF, but y∗ and y0 are conditionally independent
iven (x∗, x0); i.e., p(y∗, y0|x∗, x0) = p(y∗|x∗)p(y0|x0). Then, we consider

∆(X0, X∗, y∗) = −2EY0|X0,X∗,y∗ [log q(y0|x0; φ∗)], (1)

here EY0|X0,X∗,y∗ [·] denotes the expectation over p(y0|x0, x∗, y∗).
For normal distributions, the PDF q(y|x; φ) can be derived from the model

y = X β + ϵ,
N × 1 N × M M × 1 N × 1 (2)

here N is the sample size, M is the number of explanatory variables, β contains the regression coefficients, ϵ is a random
ector, and the dimension of each term is indicated below it. The elements of ϵ are independent and identically distributed
ormal random variables with zero mean and variance σ 2. Let β∗ and σ 2

∗
denote the maximum likelihood estimates of β

nd σ 2, respectively, derived from the sample (X∗, y∗). Then,

∆(X0, X∗, y∗) = N log 2π + N log σ 2
∗

+ EY0|X0,X∗,y∗

[
∥y0 − X0β∗∥

2] /σ 2
∗
, (3)

here conditional independence of (β∗, σ
2
∗
, y0) given (X0,X∗, y∗) has been used. It is understood that X0 and X∗ are each

f dimension N × M , and y0 and y∗ are each of dimension N × 1.
We assume that the candidate family of models includes the true model. Therefore, y0 = X0β + ϵ0, where ϵ0 has the

ame distribution as ϵ and is independent of ϵ, and

EY0|X0,X∗,y∗

[
∥y0 − X0β∗∥

2]
= EY0|X0,X∗,y∗

[
∥X0β + ϵ0 − X0β∗∥

2]
= EY0|X0,X∗,y∗

[
∥ϵ0∥

2
+ ∥X0

(
β∗ − β

)
∥
2]

= Nσ 2
+ ∥X0

(
β∗ − β

)
∥
2.

Following Akaike, we take the expectation of (3) with respect to p(y∗|x∗). From standard regression theory (Seber and
ee, 2003, theorem 3.5),

β∗ − β ∼ N
(
0, σ 2 (

XT
∗
X∗

)−1
)

, (4)

nd hence

EY∗|X0,X∗

[
∥X0

(
β∗ − β

)
∥
2]

= σ 2 tr
[
X0

(
XT

∗
X∗

)−1 XT
0

]
. (5)

lso by standard regression theory,

N
σ 2

∗

σ 2 ∼ χ2
N−M , (6)

and hence

EY∗|X∗

[
1
σ 2

∗

]
=

(
N

N − M − 2

)
1
σ 2 . (7)

Consolidating these results gives

EY∗|X∗,X0 [∆(X0, X∗, y∗)] = N log 2π + NEY∗|X∗

[
log σ 2

∗

]
+

N
N − M − 2

[
N + tr

[
X0

(
XT

∗
X∗

)−1 XT
0

]]
. (8)

In general, explanatory variables may consist of a mix of random and fixed variables. Accordingly, partition X0 as

X0 =
[
F R0

]
, (9)

where F is a fixed N ×MF matrix, and R0 is a random N ×MR matrix, with M = MF +MR. The rows of R0 are independent
realizations from a multivariate normal distribution. Exactly one column of F is a vector of ones corresponding to the
intercept, hence 1 ≤ MF ≤ M . The resulting design matrix (9) includes the Analysis of Covariance (ANCOVA) model.
Similarly, define

X∗ =
[
F R∗

]
, (10)

where R∗ is drawn from the same distribution as R0 but is independent of R0. F is the same in (9) and (10). The following
lemma is proven in the appendix.
2
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emma 1. Let X0 and X∗ be defined as in the previous paragraph. Then

ER0,R∗

[
tr

[
X0

(
XT

∗
X∗

)−1 XT
0

]]
= MF +

MR(N + MF )
N − M − 1

, (11)

here 1 ≤ MF ≤ M and MR = M − MF .

To estimate (8), we use log σ 2
∗

as an unbiased estimate of EY∗|X∗

[
log σ 2

∗

]
, and invoke Lemma 1, which yields the

ollowing proposition.

roposition 1. An unbiased estimate of (8) under (9) and (10) is

AICm(Y |X) = N log 2π + N log σ 2
∗

+
N(N + MF )
N − M − 2

(
1 +

MR

N − M − 1

)
, (12)

here ‘‘m" emphasizes a mix of Random-X and Same-X explanatory variables.

Two special cases are of interest. The first is X0 = X∗ = F, which is the case for both Fixed-X and Same-X as defined
y Rosset and Tibshirani (2020). Fixed-X means F is fixed and Same-X means F is random. The appendix shows that
emma 1 holds true for both Same-X and Fixed-X. Therefore, both Fixed-X and Same-X correspond to MF = M and
MR = 0 in Proposition 1.

Proposition 2. An unbiased estimate of (8) under Same-X or Fixed-X is

AICc(Y |X) = N log 2π + N log σ 2
∗

+
N(N + M)
N − M − 2

. (13)

This expression is precisely the AICc derived in Hurvich and Tsai (1989). Therefore, the standard correction for AIC
corresponds to Fixed-X and Same-X.

The second special case is Random-X, defined as follows.

Definition 1 (Random-X). Random-X means that X0 and X∗ are defined as in (9) and (10) with MF = 1, where F is an
N-dimensional vector of ones to account for the intercept.

Our definition of Random-X differs from that of Rosset and Tibshirani (2020) by including an intercept term. We
include the intercept in Random-X so that the expectation of (8) does not depend on the mean of X0 and X∗. Random-X
corresponds to MF = 1 and MR = M − 1 in Proposition 1.

Proposition 3. An unbiased estimate of (8) under Random-X is

AICr(Y |X) = N log 2π + N log σ 2
∗

+
N(N + 1)
N − M − 2

(
1 +

M − 1
N − M − 1

)
, (14)

here the ‘‘r" is to emphasize that the explanatory variables are random.

The difference between AICr and AICc is

AICr(Y |X) − AICc(Y |X) =
(M − 1)(M + 2)

(N − M − 1)(N − M − 2)
, (15)

hich is positive for all M > 1. It follows that AICc underestimates the out-of-sample prediction uncertainty under
andom-X. This is to be expected: if X is random, then its difference between training and validation samples contributes
source of prediction uncertainty that is missing when X is assumed fixed. For given N , this bias grows faster-than-

quadratically with M . The fact that the bias grows with M means that AICc is more likely than AICr to select overfitted
models under Random-X.

Hurvich and Tsai (1989) also consider model selection for autoregressive (AR) models, for which Random-X is clearly
more appropriate than Same-X. However, past justifications of AICc for AR processes have been based on asymptotic
arguments (Hurvich and Tsai, 1989; Brockwell and Davis, 2002). For serially correlated processes, Lemma 1 does not
hold, for reasons discussed in Appendix 1. The exact information criterion for AR processes is not known for small N ,
even for Gaussian processes.

3. Numerical simulations

Following Hurvich and Tsai (1989), we compare selection criteria using realizations from model (2) with β =

(1, 2, 3, 0, 0, 0, 0)T , σ 2
= 1, and N = 10. The candidate models contain at most seven explanatory variables, hence X

is N × 7. The candidate models are evaluated sequentially such that the m’th model uses the first m columns of X.
In contrast to Hurvich and Tsai (1989), we use 10 000 realizations instead of 100 (for more accuracy), and the first

column of X is a vector of ones corresponding to the intercept term. For Random-X, we generate 10 000 realizations of X ,
0
3
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Fig. 1. Selection criteria and the Kullback–Leibler divergence averaged over 10 000 realizations from the regression model (2) with M = 7, N = 10,
and other details described in the text. The example is similar to that in Fig. 1 of Hurvich and Tsai (1989)..

Table 1
Probability of selecting a candidate model of order m when
the true order is m = 3. Probabilities are estimated from
10 000 simulations.
m AIC AICc AICr

1 0.00 0.00 0.01
2 0.00 0.00 0.01
3 0.32 0.97 0.98
4 0.10 0.03 0.00
5 0.09 0.00 0.00
6 0.14 0.00 0.00
7 0.34 0.00 0.00

and another 10 000 independent realizations of X∗, such that each row of the last M − 1 columns are independent
dentically distributed normal random variables. The corresponding estimate of ∆ is

∆̂Random-X(X0, X∗, y∗) =
1

10000

10000∑
k=1

⎛⎜⎝N log
(
σ (k)

∗

)2
+

∥y(k)0 − X(k)
0 β(k)

∗
∥
2(

σ
(k)
∗

)2

⎞⎟⎠ ,

here superscript (k) indicates the estimate derived from the k’th realization. For Same-X, 10 000 realizations of X∗ are
enerated in the same way, and X0 is set equal to X∗. The corresponding sample estimate of ∆ is

∆̂Same-X(X∗, X∗, y∗) =
1

10000

10000∑
k=1

⎛⎜⎝N log
(
σ (k)

∗

)2
+

Nσ 2(
σ

(k)
∗

)2 +
∥X(k)

∗

(
β(k)

∗
− β

)
∥
2(

σ
(k)
∗

)2

⎞⎟⎠ .

t is understood that terms like X0β∗ and X∗β∗ are evaluated using only the first m columns of the candidate model.
The average values of AIC, AICc, AICr, ∆̂Random-X and ∆̂Same-X are shown in Fig. 1. The results for AIC, AICc, and ∆̂Random-X

ssentially reproduce those of Fig. 1 in Hurvich and Tsai (1989), with our ∆̂Random-X corresponding to ∆ in Hurvich and Tsai
1989). As can be seen, AIC is a strongly negatively biased estimator of ∆Random-X, whereas AICc is less biased. Nevertheless,
ICc is still negatively biased relative to ∆Random-X. This bias also is evident in Fig. 1 in Hurvich and Tsai (1989). For m ≥ 3,
ICc is an unbiased estimate of ∆Same-X. These results confirm that AICc is an unbiased estimate of the information criterion
or Same-X, but not for Random-X. In contrast, AICr is an unbiased estimate of the information criterion for Random-X.

Table 1 shows the probability of choosing the candidate model of order m over the true model of order 3 for the
hree criteria. As can be seen, AIC has large probability of selecting overfitted models (i.e., 67% for m > 3). In contrast,
ICc selects overfitted models 3% of the time, while AICr selects overfitted models 0% of the time, confirming that AICr is
ess likely to select overfitted models than AICc. In this particular example from Hurvich and Tsai (1989), the probability
f selecting overfitted models is small, but other examples that highlight the overfitting tendencies of AICc could be
ontrived.
Hurvich and Tsai (1989) also consider the autoregressive model

yt = 0.99yt−1 − 0.8yt−2 + ϵt (t = 0, . . . ,N − 1), (16)

here ϵt is a Gaussian white noise process with zero mean and unit variance. We fit realizations from this model to an
rder-m autoregressive model, where order-0 corresponds to the intercept-only model. The fit is based on least squares
4
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Fig. 2. Average criteria and Kullback–Leibler divergence averaged over 10 000 realizations from the autoregressive model (16) based on N = 23.
The example is similar to that in Fig. 2 of Hurvich and Tsai (1989)..

Table 2
Probability of selecting a particular candidate AR model of
order p when the true order is p = 2. Probabilities are
estimated from 10 000 simulations from model (16).
p AIC AICc AICr

0 0.00 0.00 0.00
1 0.00 0.01 0.01
2 0.24 0.88 0.92
3 0.04 0.07 0.05
4 0.02 0.03 0.01
5 0.01 0.01 0.00
.
.
.

.

.

.
.
.
.

.

.

.

17 0.04 0.00 0.00
18 0.11 0.00 0.00
19 0.43 0.00 0.00

estimation of a model of the form (2), where y is a 23-dimensional vector from the process, the first column of X is a
ector of ones corresponding to the intercept, and the next two columns of X are 1-step and 2-step lagged versions of
he process. Therefore, M = 3 and N = 23. The corresponding estimates of the criteria are shown in Fig. 2. The results
re similar to those of Fig. 2 in Hurvich and Tsai (1989), particularly in showing that AIC fails to reach a minimum and
hat AICc follows the shape of ∆̂random-X. The probability of selecting particular models are shown in Table 2. The results
re similar to those in Table 1, particularly in showing that AIC tends to select the maximum order and that AICr tends
o select more parsimonious models than AICc. However, AICc is negatively biased relative to ∆Same-X. This discrepancy
s presumably due to serial correlation in the data, which violates the assumptions under which AICc was derived. AICr
ppears to be a nearly unbiased estimate of ∆̂random-X, but this is fortuitous to this example. For instance, if an AR(1)
odel is used, then the bias of AICr is evident, and AICc is even more biased (not shown). These results show that neither
ICc nor AICr are exactly unbiased for AR processes. These biases reflect the fact that neither criterion is derived by exact
ntegration of an information criterion for AR processes.

. Multivariate AICm

We now derive AICm for the multivariate regression model

Y = X B + E ,

N × P N × M M × P N × P (17)

here N is sample size, P is the number of response variables in Y, M is the number of explanatory variables in X,
contains regression coefficients, E is a random matrix. Each row of E is independently distributed as a multivariate
ormal with zero mean and covariance matrix Σ .
Following the univariate derivation, let B∗ andΣ ∗ denote the maximum likelihood estimators of B andΣ , respectively,

erived from the training sample (X∗,Y∗), and let (X0,Y0) be the validation sample used to estimate KL divergence.
hen,

−2 log q(y |x ; φ∗) = NP log(2π ) + N log|Σ |+Q . (18)
0 0 ∗

5
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here |·| denotes the determinant and

Q = tr
[
(Y0 − X0B∗)Σ

−1
∗

(Y0 − X0B∗)
T ] . (19)

ssuming the candidate family of models includes the true model, Y0 = X0B + E0, where the rows of E0 and E are
ndependent, then

EY0|X0,X∗,Y∗
[Q ] = EY0|X0,X∗,Y∗

[
tr

[
Σ−1

∗
ET
0E0 + Σ−1

∗
(B∗ − B)T XT

0X0 (B∗ − B)
]]

= N tr
[
Σ−1

∗
Σ

]
+ tr

[
Σ−1

∗
(B∗ − B)T XT

0X0 (B∗ − B)
]
.

rom standard regression theory, (B∗,X0,Σ ∗) are conditionally independent given (X∗,X0), and NΣ ∗ has Wishart
istribution WP [N − M,Σ ] (theorems 6.2.2 and 6.2.3 in Mardia et al., 1979). Standard properties of Wishart-distributed
atrices (Muirhead, 2009, section 3.2.3) give

EY∗|X∗

[
Σ−1

∗

]
=

N
N − M − P − 1

Σ−1. (20)

sing the fact that the covariance between (B∗)ij and (B∗)kl is (Σ )ik((XT
∗
X∗)−1)jl (theorem 6.2.3 in Mardia et al., 1979), it

follows that

EY0Y∗|X0X∗
[Q ] =

NP
N − M − P − 1

(
N + tr

[
X0

(
XT

∗
X∗

)−1 XT
0

])
. (21)

Therefore, the information criterion for multivariate regression model (17) is

EY0Y∗|X0X∗

[
−2 log q(y0|x0; φ∗)

]
= NP log(2π )+NEY∗|X∗

log |Σ ∗|+
NP

N − M − P − 1

(
N + tr

[
X0

(
XT

∗
X∗

)−1 XT
0

])
, (22)

hich is the multivariate generalization of ∆ in (8) (to which it reduces when P = 1). Invoking Lemma 1 gives the
ollowing selection criterion for multivariate regression with an arbitrary mix of Random-X and Same-X predictors.

roposition 4. An unbiased estimate of the information criterion (22) for the multivariate regression model (17) under (9)
nd (10) is

AICm(Y |X) = N log |Σ ∗| + NP log 2π +
N(N + MF )P

N − M − P − 1

(
1 +

MR

N − M − 1

)
.

Substituting MF = M and MR = 0 gives the Same-X AICc,

AICc(Y |X) = N log |Σ ∗| + NP log 2π +
(N + M)NP

N − M − P − 1
,

hich agrees with the AICc in Bedrick and Tsai (1994). Substituting MF = 1 and MR = M − 1 gives the multivariate
generation of AICr for Random-X,

AICr(Y |X) = N log |Σ ∗| + NP log 2π +
N(N + 1)P

N − M − P − 1

(
1 +

M − 1
N − M − 1

)
,

hich agrees with (14) for P = 1. An equivalent expression for AICr is

AICr(Y |X) = N log 2π + N log σ 2
∗

+ (N + 1)
(

N(MR + P)
N − MR − P − 2

−
N(MR)

N − MR − 2

)
.

sing this expression to compute the difference in AICr between nested models yields (5.17) of Fujikoshi (1985), where
he latter is the AIC criterion for selecting the ‘‘best subset" of X-variables in Canonical Correlation Analysis. This reveals
hat Fujikoshi (1985) derived the corrected AIC for Random-X well before (Rosset and Tibshirani, 2020) and related papers.
elSole and Tippett (2020) give yet another derivation of AICr from a different perspective.
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